114 research outputs found

    Posing 3D Models from Drawing

    Get PDF
    Inferring the 3D pose of a character from a drawing is a complex and under-constrained problem. Solving it may help automate various parts of an animation production pipeline such as pre-visualisation. In this paper, a novel way of inferring the 3D pose from a monocular 2D sketch is proposed. The proposed method does not make any external assumptions about the model, allowing it to be used on different types of characters. The inference of the 3D pose is formulated as an optimisation problem and a parallel variation of the Particle Swarm Optimisation algorithm called PARAC-LOAPSO is utilised for searching the minimum. Testing in isolation as well as part of a larger scene, the presented method is evaluated by posing a lamp, a horse and a human character. The results show that this method is robust, highly scalable and is able to be extended to various types of models

    Character animation reconstruction from content based motion retrieval

    Get PDF
    We present the initial design of a motion reconstruction framework for character animation which encompasses the use of supervised and unsupervised learning techniques for the retrieval and synthesis of new realistic motion. Taking advantage of the large amounts of Motion Capture data accumulated over the years, our aim is to shorten animation production times by providing animators with more control over the specification of high-level parameters and a user-friendly way of retrieving and reusing this data, applying clustering to organize the human motion database and Neural Networks for motion generatio

    Fluid Simulation by the Smoothed Particle Hydrodynamics Method: A Survey.

    Get PDF
    This paper presents a survey of Smoothed Particle Hydrodynamics (SPH) and its use in computational fluid dynamics. As a truly mesh-free particle method based upon the Lagrangian formulation, SPH has been applied to a variety of different areas in science, computer graphics and engineering. It has been established as a popular technique for fluid based simulations, and has been extended to successfully simulate various phenomena such as multi-phase flows, rigid and elastic solids, and fluid features such as air bubbles and foam. Various aspects of the method will be discussed: Similarities, advantages and disadvantages in comparison to Eulerian methods; Fundamentals of the SPH method; The use of SPH in fluid simulation; The current trends in SPH. The paper ends with some concluding remarks about the use of SPH in fluid simulations, including some of the more apparent problems, and a discussion on prospects for future work

    Enhancing Character Posing by a Sketch-based Interaction

    Get PDF

    Repurpose 2D Animations for a VR Environment using BDH Shape Interpolation

    Get PDF
    Virtual Reality technology has spread rapidly in recent years. However, its growth risks ending soon due to the absence of quality content, except for few exceptions. We present an original framework that allows artists to use 2D characters and animations in a 3D Virtual Reality environment, in order to give an easier access to the production of content for the platform. In traditional platforms, 2D animation represents a more economic and immediate alternative to 3D. The challenge in adapting 2D characters to a 3D environment is to interpret the missing depth information. A 2D character is actually flat, so there is not any depth information, and every body part is at the same level of the others. We exploit mesh interpolation, billboarding and parallax scrolling to simulate the depth between each body segment of the character. We have developed a prototype of the system, and extensive tests with a 2D animation production show the effectiveness of our framework

    Motion capture based motion analysis and motion synthesis for human-like character animation.

    Get PDF
    Motion capture technology is recognised as a standard tool in the computer animation pipeline. It provides detailed movement for animators; however, it also introduces problems and brings concerns for creating realistic and convincing motion for character animation. In this thesis, the post-processing techniques are investigated that result in realistic motion generation. Anumber of techniques are introduced that are able to improve the quality of generated motion from motion capture data, especially when integrating motion transitions from different motion clips. The presented motion data reconstruction technique is able to build convincing realistic transitions from existing motion database, and overcome the inconsistencies introduced by traditional motion blending techniques. It also provides a method for animators to re-use motion data more efficiently. Along with the development of motion data transition reconstruction, the motion capture data mapping technique was investigated for skeletal movement estimation. The per-frame based method provides animators with a real-time and accurate solution for a key post-processing technique. Although motion capture systems capture physically-based motion for character animation, no physical information is included in the motion capture data file. Using the knowledge of biomechanics and robotics, the relevant information for the captured performer are able to be abstracted and a mathematical-physical model are able to be constructed; such information is then applied for physics-based motion data correction whenever the motion data is edited

    Transmission: A telepresence interface for neural and kinetic interaction

    Get PDF
    Transmission is both a telepresence performance and a research project. As a real-time visualization tool, Transmission creates alternate representations of neural activity through sound and vision, investigating the effect of interaction on human consciousness. As a sonification project, it creates an immersive experience for two users: a soundscape created by the human mind and the influence of kinetic interaction. An electroencephalographic (EEG) headset interprets a user’s neural activity. An Open Sound Control (OSC) script then translates this data into a real-time particle stream and sound environment at one end. A second user in a remote location modifies this stream in real time through body movement. Together they become a telematic musical interface-communicating through visual and sonic representation of their interactions

    Facial expression cloning optimization method based Laplace operator.

    Get PDF
    In view of the reality of facial expression cloning and efficiency of expression reconstruction, a novel method based on motion capture data is proposed. After capturing the data of six fundamental expressions, it normalizes these data to make them in the same range. Then 41 points are chosen in critical areas of facial expression and it gets cloning expression using Laplace deformation algorithm with convex weight which can preserve the details of facial expression to avoid the low fidelity of uniform weights and unstable calculation of cotangent weights. Experimental results show that this method can generate realistic and natural expression animations and the efficiency of facial expression cloning is improved significantly

    Attention-Based Recurrent Autoencoder for Motion Capture Denoising

    Get PDF
    To resolve the problem of massive loss of MoCap data from optical motion capture, we propose a novel network architecture based on attention mechanism and recurrent network. Its advantage is that the use of encoder-decoder enables automatic human motion manifold learning, capturing the hidden spatial-temporal relationships in motion sequences. In addition, by using the multi-head attention mechanism, it is possible to identify the most relevant corrupted frames with specific position information to recovery the missing markers, which can lead to more accurate motion reconstruction. Simulation experiments demonstrate that the network model we proposed can effectively handle the large-scale missing markers problem with better robustness, smaller errors and more natural recovered motion sequence compared to the reference method

    Video-assisted thoracic bronchial sleeve lobectomy with bronchoplasty for treatment of lung cancer confined to a single lung lobe: a case series of Chinese patients

    Get PDF
    BACKGROUND: The outcomes of video-assisted thoracic bronchial sleeve lobectomy (VABSL), a minimally invasive video-assisted thoracoscopic (VATS) lobectomy, are mostly unknown in Chinese patients. OBJECTIVES: To investigate operative and postoperative outcomes of VABSL in a cases series of Chinese patients with lung cancer. METHODS: Retrospective study of 9 patients (male:female 8:1; mean age 59.4 ± 17.6 years, ranging 21–79 years) diagnosed with lung cancer of a single lobe, treated with VABSL between March 2009 and November 2011, and followed up for at least 2 months (mean follow-up: 14.17 ± 12.91 months). Operative outcomes (tumor size, operation time, estimated blood loss and blood transfusion), postoperative outcomes (intensive care unit [ICU] stay, hospitalization length and pathological tumor stage), death, tumor recurrence and safety were assessed. RESULTS: Patients were diagnosed with carcinoid cancer (11.1%), squamous carcinoma (66.7%) or small cell carcinoma (22.2%), affecting the right (77.8%) or left (22.2%) lung lobes in the upper (55.6%), middle (11.1%) or lower (33.3%) regions. TNM stages were T2 (88.9%) or T3 (11.1%); N0 (66.7%), N1 (11.1%) or N2 (22.2%); and M0 (100%). No patient required conversion to thoracotomy. Mean tumor size, operation time and blood loss were 2.50 ± 0.75 cm, 203 ± 20 min and 390 ± 206 ml, respectively. Patients were treated in the ICU for 18.7 ± 0.7 hours, and overall hospitalization duration was 20.8 ± 2.0 days. No deaths, recurrences or severe complications were reported. CONCLUSIONS: VABSL surgery is safe and effective for treatment of lung cancer by experienced physicians, warranting wider implementation of VABSL and VATS training in China
    corecore